More than 25.000

- Chillers in

Operation

TECHNOLOGY IN CHILLER

Quality Policy

Prefessional Happiness

Client's Satisfaction

Just settle down when the best solution for the success of our clients is
achieved.

Continuous Innovation

To be recognized as a technology company, reference in innovation and pioneerism.

OUR CLIENTS

Auto Industry
GAGNET (FD) BOSCH SARICHELI

Food Industry

Pharmaceutical Industry

Home Appliances
Metalfrio
ELGIN
[al Electrolux
Whirlpool
HITACHI Inspire the Next

Mechanical and Metallurgical Industry

Datacenters

HostDime MAGICCSMP gregn AIII ClarO' america.net ${ }^{85}$

Others
ALSTOM
प-BASF
Colgate ${ }^{\circ}$

<embraer

ZAEINN

PLASTICS TRANSFORMATION

Thermal control in deformation of plastics

Precise temperature control is essential in the plastics industry. For every application and raw material processed there is an ideal cooling or heating solution.

Modular and Compact DryCooler

ThermoRegulator

Chiller Line

ThermoChiller

Dry and cold Air Units

Heat Exchanger

COOLING PROCESSES

Chiller

Chillers operate in a refrigerator cycle to cool the water.
The heat extracted from the process by the water, added to the power of the compressors, is dissipated through the flow of ambient air or industrial water.

Compact Chiller MSA

MiniChiller MCA

- Refrigeration capacity from 3 to $9.000 \mathrm{kcal} / \mathrm{h}$.
- Easy-to-operate microprocessor control.
- Economy and ease installation.

- Refrigeration capacity from 5 to $100.000 \mathrm{kcal} / \mathrm{h}$.
- CLP with touch screen and full fault diagnosis.
- Double refrigeration circuit from $30.000 \mathrm{kcal} / \mathrm{h}$.
- Adjustable chilled water temperature from 5 to $25^{\circ} \mathrm{C}$.
- Eco-friendly coolant R-410A that does not harm the ozone layer.
- Integrated stainless steel reservoir and pump.
- Air-cooled with high-efficiency microchannel heat exchangers.

Model ${ }^{(1)}$	Rated Power ${ }^{(2)}$ kcal/h	Steady Power ${ }^{(3)}$ kW	Power Installed ${ }^{(3)}$ kVA	Dimensions in millimeters			Process Pump		Water tank liters	Condenser Air $\mathrm{m}^{3} / \mathrm{h}$	\qquad Condens. Process	Weight kg
				Width	Length	Heigth	$\mathrm{m}^{3} / \mathrm{h}$	mca				
MCA-3	3.000	2,0	3,0	483	656	868	0,9	23	20	2.400	3/4"	150
MCA-5	5.000	2,5	3,8	483	666	868	1,4	30	20	2.400	3/4"	165
MCA-9	9.100	3,5	6,8	565	990	1.058	2,3	24	27	3.350	$1{ }^{\prime \prime}$	180
MSA-5	6.610	3,5	7,0	670	920	1.285	1,5	30	30	7.500	$1 "$	180
MSA-9	10.040	4,6	9,1	670	920	1.285	1,5	30	30	7.500	$1 "$	200
MSA-15	16.400	6,3	11,4	802	951	1.382	3,2	30	30	8.000	1.1/2"	300
MSA-22	22.400	8,8	14,7	860	1.258	1.540	6,2	30	60	8.000	1.1/2"	370
MSA-30	30.500	10,5	19,2	831	1.363	1.945	6,2	30	60	8.600	1.1/2"	430
MSA-45	43.400	17,6	27,8	831	1.663	1.945	16,4	30	120	17.200	$2^{\prime \prime}$	500
MSA-60	65.800	23,4	37,7	831	1.663	1.945	16,4	30	120	16.000	$2^{\prime \prime}$	525
MSA-75	78.000	25,6	44,2	831	2.233	1.945	16,4	30	110	24.000	$2^{\prime \prime}$	600
MSA-100	101.500	36,9	62,5	831	2.520	2.250	24,5	37	110	32.100	$3^{\prime \prime}$	720

1. Dual independent cooling circuit is standard from MSA-30 onwards.
2. Cooling capacities valid for chilled water leaving at $10^{\circ} \mathrm{C}$, returning at $14^{\circ} \mathrm{C}$ and ambient temperature of $27^{\circ} \mathrm{C}$.
3. Active power with chiller operating at 100% capacity with chilled water at $10^{\circ} \mathrm{C}$.
4. Total power for dimensioning the electrical installation must not be considered as energy consumption. For data on customized equipment, consult Mecalor Engineering.

Compact Chiller MSW

- Refrigeration capacity from 5 to 75,000 kcal/h.
- Adjustable chilled water temperature from 5 to $25^{\circ} \mathrm{C}$.
- Ecological coolant R-410A.
- Integrated stainless steel reservoir and pump.
- CLP with touch screen and full fault diagnosis.
- Double refrigeration circuit from 30,000 kcal/h.

Water condensation with high efficiency plate heat exchanger

Model ${ }^{(1)}$	Rated Power ${ }^{(2)}$ kcal/h	Steady Power (3) kW	Power Installed(x) kVA	Dimensions in millimeters			Process Pump		Water tank liters	Condenser Air $\mathrm{m}^{3} / \mathrm{h}$	Pipe Diameter		Weight kg
				Width	Length	Heigth	$\mathrm{m}^{3} / \mathrm{h}$	mca			Condens.	Process	
MSW-5	6.430	2,4	5,5	670	920	1.031	1,5	32	30	1,5	$1{ }^{\prime \prime}$	1 "	180
MSW-9	9.820	3,4	7,6	670	920	1.031	3,1	26	30	2,3	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	200
MSW-15	16.850	4,8	9,9	802	900	1.406	4,0	29	65	3,9	1.1/2"	1.1/2"	300
MSW-22	23.000	6,9	13,2	802	900	1.406	6,2	30	80	5,5	1.1/2"	1.1/2"	370
MSW-30	32.800	8,7	17,7	828	1.250	1.573	6,2	30	115	7,6	1.1/2"	1.1/2 ${ }^{\prime \prime}$	500
MSW-45	44.000	13,7	25,0	828	1.250	1.573	11,1	41	115	10,6	1.1/2"	1.1/2"	700
MSW-60	70.800	18,9	34,5	828	1.250	1.573	16,0	30	215	16,2	$2^{\prime \prime}$	2 "	800
MSW-75	81.400	21,4	39,9	830	1.250	1.573	16,0	30	215	18,2	$2{ }^{\prime \prime}$	2 "	850

[^0]
Industrial Chiller RLA

- Refrigeration capacity from 130,000 to $850,000 \mathrm{kcal} / \mathrm{h}$.
- Adjustable chilled water temperature from 5 to $25^{\circ} \mathrm{C}$.
- Ecological coolant R-410A.
- Integrated stainless steel reservoir and pump.
- CLP with touch screen and full fault diagnosis.
- Double independent cooling circuit.

Model ${ }^{(1)}$	Rated Power ${ }^{(2)}$ kcal/h	Steady Power ${ }^{(3)}$ kW	Power Installed ${ }^{(3)}$ kVA	Dimensions in millimeters			Process Pump		Water tank liters	$\underset{\text { Condenser }}{\text { Air }}$	Pipe Diameter Condens. Process	Weight kg
				Width	Length	Heigth	$\mathrm{m}^{3} / \mathrm{h}$	mca				
RLA-130	126.800	47,5	75,0	1.143	2.604	2.619	33,0	42	290	43.000	$3^{\prime \prime}$	1.500
RLA-170	166.600	55,8	91,9	1.873	2.570	2.280	36,4	37	160	69.000	$3{ }^{\prime \prime}$	1.400
RLA-210	212,000	72.1	118,8	1.873	2.570	2.280	60,0	30	160	69.000	$3{ }^{\prime \prime}$	1.450
RLA-260	252.800	88.3	145.8	2.396	2.576	2.759	66,0	30	420	86.000	$4^{\prime \prime}$	2.000
RLA-330	326.000	107.9	187.7	2.396	3.741	2.759	95,0	30	420	129.000	$4 "$	2.500
RLA-400	414.000	139,0	231,8	2.396	3.741	2.759	95,0	30	420	129.000	4"	3.900
RLA-500	492.600	161,6	298,2	2.396	5.071	2.759	145,0	30	730	172.000	$6^{\prime \prime}$	4.400
RLA-620	627.000	205,2	350,9	2.396	6.236	2.759	145,0	30	730	215.000	$6^{\prime \prime}$	5.200
RLA-800	795.000	270,6	429,2	2.396	7.401	2.759	198,0	30	780	258.000	$6^{\prime \prime}$	6.000

1. All models in the RL line have dual independent cooling circuits.
2. Cooling capacities valid for chilled water leaving at $10^{\circ} \mathrm{C}$, returning at $14^{\circ} \mathrm{C}$ and ambient temperature of $30^{\circ} \mathrm{C}$.
3. Active power with chiller operating at 100% capacity with chilled water at $10^{\circ} \mathrm{C}$.

Industrial Chiller RLW

- Refrigeration capacity from 80,000 to $850,000 \mathrm{kcal} / \mathrm{h}$.
- Compact and low noise.
- Ecological coolant R-410A.
- Maximum energy efficiency.
- Integrated stainless steel reservoir and pump.
- CLP with touch screen and full fault diagnosis
- Integrated water filter for evaporator and condenser.
- Water condensation with plate heat exchanger with optional adjustable water heating from 40 to $50^{\circ} \mathrm{C}$.

Sturdy construction with fairing

Model ${ }^{(1)}$	Rated Power ${ }^{(2)}$ kcal/h	$\begin{gathered} \begin{array}{l} \text { Steady } \\ \text { Power } \end{array} \\ \hline \text { kW } \end{gathered}$	Power Installed ${ }^{(3)}$ kVA	Dimensions in millimeters			Process Pump		Water tank liters	$\substack{\text { Condenser } \\ \text { Air }}$$\mathrm{m}^{3} / \mathrm{h}$	Pipe Diameter	Weight kg
				Width	Length	Heigth	$\mathrm{m}^{3} / \mathrm{h}$	mca			Condens. Process	
RLW-100	105.000	29,0	56,0	1.327	1.801	2.107	24,7	36	280	24,1	$3^{\prime \prime} \quad 3^{\prime \prime}$	1.300
RLW-130	133.200	38,3	69,7	1.327	1.801	2.107	33,0	42	280	31,4	$3^{\prime \prime} \quad 3^{\prime \prime}$	1.500
RLW-170	167.400	46,7	85,5	1.327	1.801	2.107	36,4	37	280	39,7	$3^{\prime \prime} \quad 3^{\prime \prime}$	1.600
RLW-210	221.400	60,0	108,8	1.327	1.801	2.107	60,0	30	280	52,7	$3^{\prime \prime} \quad 3^{\prime \prime}$	1.700
RLW-260	264.400	74,3	132,4	2.160	2.606	2.425	66,0	30	720	62,7	$4^{\prime \prime} \quad 4^{\prime \prime}$	2.000
RLW-330	333.200	92,3	167,6	2.160	2.606	2.425	95,0	30	720	78,9	$4^{\prime \prime} \quad 4^{\prime \prime}$	2.500
RLW-400	441.000	117,4	211,8	2.160	2.606	2.425	95,0	30	720	101,4	$4^{\prime \prime} \quad 4^{\prime \prime}$	3.900
RLW-500	499.800	138,0	271,4	2.160	2.606	2.425	145,0	30	720	115,7	$6^{\prime \prime} \quad 6^{\prime \prime}$	4.400
RLW-620	648.000	174,0	317,5	2.160	2.606	2.425	145,0	30	720	152,3	$6^{\prime \prime} \quad 6^{\prime \prime}$	5.200

1. All models in the RL line have dual independent cooling circuits.
2. Cooling capacities valid for chilled water leaving at $10^{\circ} \mathrm{C}$, returning at $14^{\circ} \mathrm{C}$ and ambient temperature of $30^{\circ} \mathrm{C}$.
3. Active power with chiller operating at 100% capacity with chilled water at $10^{\circ} \mathrm{C}$.

ALUDRY | MODULAR

DryCooler is the eco-friendly replacement for conventional cooling towers.

Numerous industrial processes require cooling water in a temperature range considered "warm" ($30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$) and, for such a process, AluDry Mecalor is the best cost-effective option on the market.

Saving water and electricity, in addition to reducing monthly expenses, significantly reduces impacts on the environment.

官 4

Download our content and learn more about Aludry Mecalor.

Return on investment

DryCooler operating cost is much lower compared to cooling towers. This makes the payback quite attractive, even considering a larger initial investment.

Calculation of Return on Investment (Payback)

TermoChiller DUO

- Water condensation with plate heat exchanger.
- Water filter for evaporator and condenser.
- High flow and pressure of water for injection and blowing.
- Integrated stainless steel reservoir and pumps.
- Low ($\Delta \mathrm{T}$) for greater precision of the parts produced.
- Two-zone temperature control from 10 to $90^{\circ} \mathrm{C}$.
- Water cooling and heating.
- Ecological coolant R-410A.

CLP with touch screen

that communicates with the injection molding machine or blower.

Model	Rated Power ${ }^{\circ}$ kcal/h	Heating power in kW	Steady Power ${ }^{(2)}$ kW	Power Installed(3) kVA	Dimensions in millimeters			Process Pump ${ }_{(4)}$		Condenser water $\mathrm{m}^{3} / \mathrm{h}$	Pipe Diameter		Weight kg
					Width	Length	Heigth	$\mathrm{m}^{3} / \mathrm{h}$	mca		Process	Condens.	
DUO 9/6	9.000	2×6	5,4	17,4	561	1.248	1.379	1,6	40	2,5	$1^{\prime \prime}$	$3 / 4^{\prime \prime}$	250
DUO 15/6	15.000	2×6	7,2	26,8	561	1.248	1.379	3,2	44	3,5	$1^{\prime \prime}$	$3 / 4$ "	300
DUO 22/9	22.000	2×9	12,0	38,8	561	1.248	1.379	6,8	40	5,5	1.1/2"	1.1/4"	350
DUO 35/9	35.000	2×9	19,6	45,5	561	1.248	1.379	6,8	40	9,0	2"	1.1/4 ${ }^{\prime \prime}$	400
DUO 45/12	45.000	2×12	24,3	54,4	802	1.991	1.867	12,0	39	10,0	2 "	1.1/2"	600
DUO 60/12	60.000	2×12	28,3	64,9	802	1.991	1.867	12,0	39	15,0	$2{ }^{\prime \prime}$	$2^{\prime \prime}$	900
DUO 100/18	100.000	2×18	39,5	107,7	802	1.991	1.867	23,9	40	24,0	$2.1 / 2^{\prime \prime}$	2.1/2"	1.200

[^1]
Thermoregulator

- Direct or indirect cooling
- Stainless steel electrical resistors
- Precise control with $\pm 0.5^{\circ} \mathrm{C}$ stability
- Stainless steel pump and hydraulic circuit
- Water or oil heating with power from 9 to 50 kW
- Adjustable oil temperature up to $200^{\circ} \mathrm{C}$ (optional up to $300^{\circ} \mathrm{C}$)
- Adjustable water temperature up to $90^{\circ} \mathrm{C}$ (optional up to $150^{\circ} \mathrm{C}$)
- High reliability two-way proportional valve

CLP with touch screen

that communicates with
the injection molding machine or blower

Model	Heating Potency ${ }^{\text {(1) }}$ kW	Steady Power ${ }^{(2)}$ kW	Power Installed ${ }^{(3)}$ kVA	Dimensions in millimeters			Process Pump		Pipe diameter		Weight kg
				Width	Length	Heigth	$\mathrm{m}^{3} / \mathrm{h}$	mca	Process	Cooling	
TMR-9	9	0,8	11	300	820	591	2,0	28	1 "	1/2 ${ }^{\text {I }}$	50
TMR-12	12	0,8	14	300	820	591	2,0	28	$1{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	50
TMR-18	18	1,1	20	300	820	591	5,5	30	1.1/2"	$3 / 4^{\prime \prime}$	50
TMR-21	21	1,1	23	329	672	1.173	5,5	30	1.1/2"	$3 / 4{ }^{\prime \prime}$	80
TMR-30	30	1,1	32	329	672	1.173	5,5	30	1.1/2"	$3 / 4{ }^{\prime \prime}$	80
TMR-42	42	2,6	47	550	850	1.100	16,5	30	21	$1 "$	200
TMR-50	50	2,6	55	550	850	1.100	16,5	30	$2^{\prime \prime}$	$1{ }^{\prime \prime}$	200

1. Cooling capacity depends on operating conditions.
2. The TMR is sized to achieve an O T of up to $2^{\circ} \mathrm{C}$ between cold source and process water.
3. Power valid for equipment operating/cooling without heating resistor.
4. Dimensions valid only for TMR and water For oil TMR, consult Mecalor.

Flexo thermochiller

- Adjustable temperature from 5 to $20^{\circ} \mathrm{C}$ for the calenders and 25 to $50^{\circ} \mathrm{C}$ for the central drum.
- Single $20,000 \mathrm{kcal} / \mathrm{h}$ model for 4 to 12 color flexographic printers.
- Air-cooled with high-efficiency microchannel heat exchangers.
- Precise central drum control with $\pm 0.5^{\circ} \mathrm{C}$ stability.
- Fully stainless steel pump and hydraulic circuit.
- Temperature control in two independent zones.

Modelo	Cooling ${ }^{(1)}$	Heating Power in	Regime ${ }^{(2)}$		Dimensions in millimeters		Process Pump ${ }^{(3)}$		Piping Process	Weight kg
	kcal/h	kW	kW	Width	Length	Heigth	$\mathrm{m}^{3} / \mathrm{h}$	mca		
FLEXO-20/9	22.400	12	9,3	863	1.258	1.539	5,8	20	1.1/4"	450

[^2]
UAF Cold Air Unit

- Remote air condenser option (split type).
- Independent units for air ring and IBC.
- Water condensation with plate heat exchanger.
- Can be installed on the extruder frame.
- Air temperature control with $\pm 0.5^{\circ} \mathrm{C}$ accuracy.
- TFits monolayer or COEX extruders up to 7 layers.
- Air temperature from 5 to $25^{\circ} \mathrm{C}$ to ensure productivity
- Balloon extruders with production of up to $1000 \mathrm{~kg} / \mathrm{h}$ of HDPE/LDPE

Maximum energy

Heat exchanger TC

Modelo	$\begin{gathered} \begin{array}{c} \text { Cold Air } \\ \text { Flow } \end{array} \\ \hline \mathrm{m}^{3} / \mathrm{h} \end{gathered}$	Maximum plastic production ${ }^{(2)}$ kg/h	Steady Power ${ }^{(3)}$ kW	Dimensions in millimeters			Diameter inlet and outlet of air inches	Ice water $\mathrm{m}^{3} / \mathrm{h}$	Condensation Water$\mathrm{m}^{3 / \mathrm{h}}$	Diameter of water connections inches	Weight kg
				Width	Length	Heigth					
TC-50	500	80	-	694	1.066	550	$6^{\prime \prime}$	2	-	1.1/2*	50
TC-200	2.000	250	-	899	1.235	741	$8^{\prime \prime}$	7	-	1.1/2*	80
TC-400	4.000	500	-	1.174	1.232	965	$8^{\prime \prime}$	15	-	$2{ }^{\prime \prime}$	110
TC-700	7.000	700	-	1.332	1.334	1.155	$10^{\prime \prime}$	19	-	2 "	200
TC-1000	10.000	1.000	-	1.305	1.398	1.305	$12^{\prime \prime}$	25	-	2.1/2"	350
UAF-A-1500	1.500	150	694	950	1.275	1.765	8"	-	-	-	350
UAF-A-2500	2.500	250	899	950	1.275	1.765	$8^{\prime \prime}$	-	-	-	450
UAF-A-4000	4.000	500	1.174	1.250	1.275	2.185	10 "	-	-	-	800
UAF-A-6000	6.000	700	1.332	1.250	1.275	2.185	10 "	-	-	-	950
UAF-W-1500	1.500	150	6,5	950	1.276	1.765	$8^{\prime \prime}$	-	7	1.1/2 ${ }^{\text { }}$	350
UAF-W-2500	2.500	250	11,6	950	1.200	1.765	$8{ }^{\prime \prime}$	-	11	1.1/2 ${ }^{\text { }}$	450
UAF-W-4000	4.000	500	18,1	1.250	1.282	2.185	$10^{\prime \prime}$	-	14	3 "	800
UAF-W-6000	6.000	700	23,4	1.250	1.282	2.185	$10^{\prime \prime}$	-	24	3 "	950

[^3]
Dry Air Unit UAS

- 40 to 50% higher energy efficiency when compared to the use of desiccant rotor (chemical).
- Allows chilled water down to $-5^{\circ} \mathrm{C}$ in injection and blow molds, without generating condensation in the cavities.
- It can be an individual unit per mold or a dry air plant for a line of machines.
- Refrigerated dehumidification technology with dew point up to $4^{\circ} \mathrm{C}$.
- Increases productivity and eliminates stains on molded or blown parts.
- Regeneration (reheating dry air) through the condenser itself.
- Specially developed for injection and blow molds.

Does not require installation of chilled water (chiller) for

Modelo	Dry air flow$\mathrm{m}^{3} / \mathrm{h}$	$\begin{gathered} \begin{array}{c} \text { Power in } \\ \text { Regime } \end{array} \\ \hline \text { kW } \end{gathered}$	Dimensions in millimeters			Diameter of air exit Inches	Weight kg
			Width	Length	Heigth		
UAS-1000	1.500	7,7	825	1.357	2.123	$8{ }^{\prime \prime}$	400
UAS-1500	1.500	10,3	825	1.357	2.123	$12^{\prime \prime}$	500
UAS-2000	1.500	16,2	1.125	1.980	2.123	$12^{\prime \prime}$	600
UAS-3000	1.500	19,1	1.125	1.980	2.123	$12^{\prime \prime}$	850

[^4]
AFTER SALES SERVICES

คree and Lifetime Support Zero cost to troubleshoot over the phone.

Prices
Best value for money on the market.

Clients satisfaction
he average score achieved in recent months was 9.1

BESPOKZ SOLUTONS

Mecalor has a engineers specialists team to meet the needs and customer requirements, whether in customization of products, in the incorporation of engineering services, complex installations or turn-key projects.

Mecalor, with more than 60 years of experience in complex thermal engineering projects, joins Smardt, world leader of Oil Free compressor technology.
Oil-free, more efficient, and oil-free chillers that serve the most varied markets, with maximum
energy efficiency capable of substantially reducing the cost of electricity. In addition to better performance and performance, chiller with Turbocor ${ }^{\circledR}$ compressors reduce the impact on the environment.

We provide service in the whole Latin America

Eng. George Szegö, PhD

Mecalor with more than 60 years of experience in complex thermal engineering projects, is exclusively licensed in Latin America by Smardt, World Leader in Chiller Oil Free technology.

HB-Therm

Mecalor

Representative Latam
*Except Mexico

Learn more in our website

Mecalor
Brazil
Banduíra Street, 219
São Paulo | SP +55 1121881700
www.mecalor.com
Mexico
Carretera Estatal 431, Km 1+300, Bodega $30+5214426291600$ Conjunto P Ejido El Colorado, El Marqués, Querétaro. México

[^0]: 1. Dual independent cooling circuit is standard from MSW-30 onwards.
 2. Cooling capacities valid for cold water leaving at $10^{\circ} \mathrm{C}$, returning at $14^{\circ} \mathrm{C}$ and industrial water at $30^{\circ} \mathrm{C}$.
 3. Active power with chiller operating at 100% capacity with chilled water at $10^{\circ} \mathrm{C} 4$.
 4. Total power for dimensioning the electrical installation must not be considered as energy consumption. For data on customized equipment, consult Mecalor Engineering.
[^1]: 1. Capacities valid for water leaving at $10^{\circ} \mathrm{C}$ and condensing water at $35^{\circ} \mathrm{C}$.
 2. Electric power in valid regime for equipment operating at 100% of capacity without.
 heating resistors and with chilled water coming out at $10^{\circ} \mathrm{C}$.
 3. Total power for dimensioning the electrical installation must not be considered as energy consumption.
 4. Valid data for each of the two process pumps.
[^2]: 1. Valid capacity for process water leaving at $15^{\circ} \mathrm{C}$ and ambient temperature of $40^{\circ} \mathrm{C}$
 2. Power valid for equipment operating at 100% of capacity with chilled water at $10^{\circ} \mathrm{C}$
 3. Data valid for both process pumps.
[^3]: 1. Cold Air Unit (UAF) operates with adjustable air temperature from 5 to $20^{\circ} \mathrm{C}$.
 2. Heat exchanger (TC) operates with air $5^{\circ} \mathrm{C}$ above the available chilled water temperature.
 3. Sizing based on average production of LDPE plastic film with air at $15^{\circ} \mathrm{C}$, valid for air ring.
 4. Active electrical power consumed from the UAF operating at 100% of capacity.
[^4]: 1. Active power valid for UAS operating at 100% capacity.
